JAM (2020-2021)
Mock Test No: 2
Subject: Mathematics for Chemistry

Date: 02/02/2020
Time: 1 hour 30 mins
Full Marks: 50

No. of questions attempted	No. of correct answers	No. of wrong answers	Marks obtained	Total

- There is only one correct option.
- Tick (\checkmark) to the correct option.
- There is a negative marking of 0.25 for each wrong attempt.

1. Which of the following function is neither even nor odd?
(a) $\sin x$
(b) $\cos x$
(d) $\frac{e^{x}+e^{-x}}{2}$.
2. Which of the following function is not single-valued?
(a) $\sin x$
(b) x^{2}
(c) \sqrt{x}
(d) e^{-x}.
3. Which of the following function is continuous but not differentiable within $-\infty \leq$ $x \leq \infty$?
(a) $|x|$
(b) x^{2}
(c) \sqrt{x}
(d) e^{-x}.
4. $\lim _{x \rightarrow 0} \frac{\sin x}{x}$ is
(a) 0
(b) 1
(c) ∞
(d) $-\infty$
5. Which of the following is a transcendental equation in x ?
(a) $x-x y^{2}+5=0$
(b) $(x+1)^{2}+y^{2}=0$
(c) $\sqrt{x}+\sqrt{y}=\sqrt{c}$
(d) $\tan x=e^{x}$.
6. The local maxima of $f(x)=x^{2}(1-x)^{2}$ appear at
(a) 0
(b) $\frac{1}{2}$
(c) 1
(d) -1
7. The value of the integral $\int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta$ is
(a) $\frac{2}{3}$
(b) $\frac{1}{3}$
(c) π
(d) 0
8. The value of the integral $\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-x} d x$ is
(a) $\frac{\sqrt{\pi}}{2}$
(b) 0
(c) π
(d) 1
9. The value of the series $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ is
(a) $\frac{\pi^{4}}{90}$
(b) $\frac{\pi^{4}}{15}$
(c) π
(d) ∞
10. Which of the following is not a general solution of the differential equation $\frac{\mathrm{d}^{2} x(t)}{\mathrm{d} t^{2}}+$ $\omega^{2} x(t)=0$
(a) $x(t)=A \sin \omega t$
(b) $x(t)=B \cos \omega t$
(c) $x(t)=C e^{i \omega t}$
(d) $x(t)=D \tan \omega t$
11. The volume element in spherical coordinate system is given by
(a) $d V=r^{2} \sin \theta d r d \theta d \phi$
(b) $d V=r \sin \theta d r d \theta d \phi$
(c) $d V=d r d \theta d \phi$
(d) $d V=r^{2} \sin \theta \cos \phi d r d \theta d \phi$
12. Two vectors are given by $\vec{A}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{B}=-\hat{i}+2 \hat{j}-\hat{k}$. Then scalar product of \vec{A} and \vec{B} is
(a) $-5 \hat{i}-\hat{j}+6 \hat{k}$
(b) -7
(c) $\hat{i}-3 \hat{j}+4 \hat{k}$
(d) 19
13. The inverse of the matrix $\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 1 \\ 2 & 2 & 0\end{array}\right]$ is
(a) $\left[\begin{array}{ccc}\frac{1}{2} & 0 & \frac{1}{4} \\ -\frac{1}{2} & 0 & \frac{1}{4} \\ \frac{1}{2} & 1 & \frac{1}{4}\end{array}\right]$
(b)
$\left[\begin{array}{ll}1 & 1 \\ 1 \\ 0\end{array}\right]$
(c) $\left[\begin{array}{lll}1^{2} & 1 & 0 \\ 5 & 1 & 1 \\ 2 & 2 & 0\end{array}\right]$
(d)
$\left[\begin{array}{lll}1 & 5 & 0 \\ 3 & 1 & 1 \\ 2 & 2 & 7\end{array}\right]$
\checkmark
14. The value of the determinant $\left|\begin{array}{lll}1 & 5 & 7 \\ 0 & 0 & 0 \\ 2 & 2 & 7\end{array}\right|$ is
(a) 5
(b) 0
(c) -12
(d) 7
15. Using Striling approximation the value of $\ln 10$! is (approximately)
(a) 15.092
(b) 24.035
(c) 10.021
(d) 15.456
16. The simplest normalized continuous distribution is given as $p(x)=A$ when $a \leq$ $x \leq b$ and 0 otherwise. The value of A is
(a) $\frac{1}{b-a}$
(b) $\frac{1}{b+a}$
(c) $\frac{1}{b^{2}-a^{2}}$
(d) $\frac{1}{b^{3}-a^{3}}$
17. The Gaussian distribution is given as $p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x^{2}}{2 \sigma^{2}}}$ when $-\infty \leq x \leq \infty$. The variance in x is
(a) σ
(b) $\sqrt{\sigma}$
(c) σ^{2}
(d) 0
18. If A and B are two nonsingular square matrix then $(A B)^{-1}$ is given by
(a) $A^{-1} B^{-1}$
(b) $B^{-1} A^{-1}$
(c) $A^{-1} B$
(d) $A B^{-1}$
19. The Laplacian operator in circular polar coordinate system is given as
(a) $\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}$
(b) $\nabla^{2}=\frac{\partial^{2}}{\partial r}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}$
(c) $\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r} \frac{\partial^{2}}{\partial \theta^{2}}$
(d) $\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}$
20. Two complex numbers are given as $Z_{1}=2+3 i$ and $Z_{2}=4+6 i$. Then
(a) $Z_{1}>Z_{2}$
(b) $Z_{2}>Z_{1}$
(c) $Z_{1}=Z_{2}$
(d) cannot be said.
21. Which of the following is an irrational number?
(a) 1.5
(b) $\frac{5}{2}$
(c) -3
(d) π
22. For van der Waals gas, at critical point
(a) $\frac{\partial P}{\partial V}=0$ and $\frac{\partial^{2} P}{\partial V^{2}}=0$
(b) $\frac{\partial P}{\partial V}=0$ and $\frac{\partial^{2} P}{\partial V^{2}}>0$
(c) $\frac{\partial P}{\partial V}=0$ and $\frac{\partial^{2} P}{\partial V^{2}}<0$
(d) $\frac{\partial P}{\partial V}>0$ and $\frac{\partial^{2} P}{\partial V^{2}}<0$
23. The value of the integral $\int_{-\infty}^{+\infty} 2 \sin x \cos x d x$ is
(a) 1
(b) 0
(c) π
(d) 2π
24. The value of $(\cos \pi)^{i}$ is
(a) $e^{-\pi}$
(b) 0
(c) e^{π}
(d) -1
25. For a complex number $Z, Z^{*}=-Z$, then Z is
(a) real
(放) purely imaginary
(c) must be negative
(d) must be nonzero.
26. Which of the following has a nonterminating decimal expansion?
(a) $\frac{77}{210}$
(b) $\frac{23}{8}$
(c) $\frac{17}{8}$
(d) $\frac{35}{50}$
27. The $\mathbf{H C F} \times \mathrm{LCM}$ for the numbers 50 and 20 is
(a) 10
(b) 100
(c) 1000
(d) 50
28. If $f(x)=\ln x^{3}$, then $f^{\prime \prime}(3)$ is
(a) $-\frac{1}{3}$
(b) -1
(c) -3
(d) 1
(e) none of these
29. In a spherical polar coordinate system, a point A at (x, y, z) in the Cartesian coordinate system can be described by (r, θ, ϕ) where r, θ, and ϕ have their usual meaning. Expression for the volume of an infinitesimally small cube confined by $d x, d y$, and $d z$ in terms of the spherical coordinate system is given by
(a) $d r d \theta d \phi$
(b) $r \sin \theta d r d \theta d \phi$
(c) $r^{2} \sin ^{2} \theta d r d \theta d \phi$
(b) $r^{2} \sin \theta d r d \theta d \phi$
30. What is the value of $i \log _{10} i^{2}$, where $i=\sqrt{-1}$?
(a) Real and positive number
(b) Real and negative number
(c) Complex number
(d) Purely imaginary
31. The integral $\int_{-a}^{a} \cos (x) \sin (x) d x$
(a) Equals to zero for any value of a, and $\cos (x)$ is symmetric in the range of the integral.
(b) Is not equal to zero except for certain values of a, and $\sin (x)$ is antisymmetric in the range of the integral.
(c) Is not equal to zero except for certain values of a, and $\cos (x)$ is symmetric in the range of the integral.
(d) Has a non-zero value depending on a.
32. What is the value of i^{i+2}, where $i=\sqrt{-1}$?
(a) Real number
(b) Complex number
(c) Cannot be calculated
(d) None of the above.
33. Consider the trigonometric function $\frac{\cos A-\sin A+1}{\cos A+\sin A-1}$. It can be simplified as
(a) $\frac{1+\sec A-\tan A}{1-\sec A+\tan A}$
(b) $\csc A+\cot A$
(c) $\frac{1}{\csc A-\cot A}$
(d) All of the above
34. What is i ? (Given $i^{2}=-1$)
(a) a real number
(b) a complex number
(c) an imaginary number
(d) none of the above
35. The roots of the equation $x^{3}+a x^{2}-b x+c=0$ are three consecutive integers. What is the maximum value of b ?
(a) -2
(b) 0
(c) 1
(d) 2
36. Consider the following two infinite series :

$$
A=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}, \quad B=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
$$

where x is real. What is the value of $A^{2}+B^{2}$?
(a) 0
(b) ∞
(c) 1
(d) Its value cannot be defined, as the series A and B are divergent
37. The number of vectors of unit length perpendicular to vectors $\vec{a}=(1,1,0)$ and $\vec{b}=(0,1,1)$ is
(a) one
(b) two
(c) three
(d) infinite
(e) none of these
38. Find $\frac{d y}{d x}$ when $y=\log _{2} x$.
(a) $x^{2}(1+3 \log x)$
(b) $x(1+3 \log x)$
(c) $x^{4}(1+8 \log x)$
(d) $x^{2}(1+5 \log x)$
39. An electron tunnels through a square barrier of width d and height h. If h is fixed and d is normally distributed, then the electron transfer probability distribution is
(a) a normal distribution
(b) a delta function
(c) a log normal distribution
(d) a poisson distribution
40. Out of the following the only quantity that is a vector is
(a) specific heat
(b) temperature
(c) torque
(d) speed
41. Two vectors \vec{A} and \vec{B} are perpendicular when
(a) $\vec{A} \cdot \vec{B}=0$
(b) $\vec{A} \times \vec{B}=0$
(c) $\vec{A}=0$
(d) $\vec{B}=0$
42. If $\int x \sin x d x=-x \cos x+\alpha$, then the value of α is
(a) $\sin x+c$
(b) $\cos x+c$
(c) $x \cos x+c$
(d) $\cos x-\sin x+c$
43. The value of $\lim _{x \rightarrow 0}\left(\frac{1+5 x^{2}}{1+3 x^{2}}\right)^{\frac{1}{x^{2}}}$ is
(a) e^{2}
(b) e^{3}
(c) e^{5}
(d) none of these
44. $\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{d x}{1+\cos x}$ is
(a) 2
(b) -2
(c) $\frac{1}{2}$
45. $\lim _{x \rightarrow \infty}\left(\frac{x}{2+x}\right)^{2 x}$ is equal to
(a) e^{-4}
(b) e^{-6}
(c) e^{-2}
(d)

46. Function written as $y=f(x)=a_{0}+a_{1} x$ is general form of
(a) linear function
(b) variable function
(c) constant function
(d) parabolic function.
47. If $x=t^{2}-1$ and $y=t^{4}-2 t^{3}$, then when $t=1, \frac{d^{2} y}{d x^{2}}$ is
(a) 1
(b) -1
(c) 0
(d) 3
(e) $\frac{1}{2}$
48. For any vector \vec{a}, the value of $(\vec{a} \times \hat{i})^{2}+(\vec{a} \times \hat{k})^{2}$ is equal to
(a) $3 \overrightarrow{a^{2}}$
(b) $\overrightarrow{a^{2}}$
(c) $2 \overrightarrow{a^{2}}$
(d) $4 \overrightarrow{a^{2}}$
49. The points with position vectors $60 i+3 j, 40 i-8 j, a i-52 j$ are collinear if
(a) $a=-40$
(b) $a=40$
(c) $a=20$
(d) none of these
50. If the area bounded by the x-axis, the curve $y=f(x)$ and the lines $x=1, x=b$ is equal to $\sqrt{b^{2}+1}-\sqrt{2}$ for all $b>1$, then $f(x)$ is
(a) $\sqrt{x-1}$
(b) $\sqrt{x-1}$
(c) $\sqrt{x^{2}+1}$
(d) $\frac{x}{\sqrt{1+x^{2}}}$

